ANTIBACTERIAL n-HEXANE EXTRACT OF Uncaria Gambir Roxb FROM PONTIANAK
ANTIBAKTERI EKSTRAK n-HEXANE Uncaria Gambir Roxb DARIPONTIANAK
DOI:
https://doi.org/10.71275/roce.v2i2.134Keywords:
Uncaria gambir Roxb, Staphylococcus aureus, n-hexane extract, antibacterialAbstract
Staphylococcus aureus is a Gram-positive bacterium that can act as both a commensal and an opportunistic pathogen, causing a range of infections from superficial skin conditions to life-threatening illnesses. The emergence of antibiotic-resistant strains, such as MRSA, highlights the need for alternative or complementary natural antibacterials. This study aimed to evaluate the antibacterial potential of n-hexane extract of Uncaria gambir Roxb (UGR) leaves against S. aureus through both in silico prediction and in vitro testing. The compounds present in the leaves were identified using the Knapsack family database and analyzed for antibacterial activity using PASS Online, while solubility
was predicted with SwissADME. In vitro antibacterial activity was determined using the agar diffusion method at six extract concentrations (5–40%), with 10% Chloramphenicol as a positive control and sterile distilled water as a negative control. Results indicated that metabolites such as Gallic acid, Cinchonain Ia, and Procyanidins B1 and B3 exhibited the highest predicted antibacterial probabilities,
with solubility patterns suggesting better extraction in nonpolar solvents. The inhibition zone diameter generally increased with extract concentration, reaching a maximum of 10.76 ± 1.58 mm at 40%, confirming a concentration-dependent effect. However, the extract’s activity remained lower than that of Chloramphenicol (20.47 mm). Factors such as low compound concentration, limited solubility, chemical properties, and bacterial defense mechanisms likely contributed to the moderate inhibitory activity of the compound. Overall, the n-hexane extract of Uncaria gambir leaves demonstrates measurable antibacterial potential against S. aureus, supporting its traditional use and indicating its promise for further study as a natural antibacterial agent.
Downloads
References
Abubakar, A. R., & Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy & Bioallied Sciences, 12(1), 1–10. https://doi.org/10.4103/jpbs.JPBS_175_19.
Ali Alghamdi, B., Al-Johani, I., Al-Shamrani, J. M., Musamed Alshamrani, H., Al-Otaibi, B.
G., Almazmomi, K., & Yusnoraini Yusof, N. (2023). Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi Journal of Biological Sciences, 30(4), 103604. https://doi.org/10.1016/j.sjbs.2023.103604.
Amrilah, M. S., & Hilman, R. (2024). In Silico Studies For Anti-Breast Cancer Acmella Oleracea (L.) Flowers. Jurnal Farmasi Sains Dan Praktis, 12–24. https://doi.org/10.31603/pharmacy.v10i1.9145
Bashabsheh, R. H. F., Al-Fawares, O., Natsheh, I., Bdeir, R., Al-Khreshieh, R. O., &
Bashabsheh, H. H. F. (2024). Staphylococcus aureus epidemiology, pathophysiology,
clinical manifestations, and application of nano-therapeutics as a promising approach to combat methicillin-resistant Staphylococcus aureus. Pathogens and Global Health,
(3), 209–231. https://doi.org/10.1080/20477724.2023.2285187.
Belay, W. Y., Getachew, M., Tegegne, B. A., Teffera, Z. H., Dagne, A., Zeleke, T. K., Abebe,
R. B., Gedif, A. A., Fenta, A., Yirdaw, G., Tilahun, A., & Aschale, Y. (2024). Mechanism
of antibacterial resistance, strategies and next-generation antimicrobials to contain
antimicrobial resistance: a review. Frontiers in Pharmacology, 15, 1444781.
https://doi.org/10.3389/fphar.2024.1444781.
Chamani, M., Dadpour, M., Dehghanian, Z., Panahirad, S., Chenari Bouket, A., Oszako, T., & Kumar, S. (2025). From Digestion to Detoxification: Exploring Plant Metabolite Impacts on Insect Enzyme Systems for Enhanced Pest Control. In Insects (Vol. 16, Issue 4). https://doi.org/10.3390/insects16040392.
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717.
Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb
Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential
use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), e24093.
https://doi.org/10.1002/jcla.24093.
Desai, T. H., & Joshi, S. V. (2019). Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. Journal of Ethnopharmacology, 231, 494–502.
https://doi.org/https://doi.org/10.1016/j.jep.2018.11.004.
Dewi, S. R. P., Handayani, P., Anastasia, D., & Maulina, S. T. (2023). Antimicrobial potency
of toothpaste containing gambir (Uncaria gambir) extract. Padjadjaran Journal of
Dentistry, 35(2), 98. https://doi.org/10.24198/pjd.vol35no2.47130.
Dongho Dongmo, F. F., Demasse Mawamba, A., Ebelle Etame, R. M., Djeukeu Asongni, W., Lienou Lienou, L., Tamgue, O., Sameza, M. L., Ngono Ngane, R. A., & Gouado, I. (2025). Enhancing health through phenolic compounds: A comprehensive review of spices and herbs consumed in Cameroon based on global research. Applied Food Research, 5(1), 100837. https://doi.org/https://doi.org/10.1016/j.afres.2025.100837.
Gupta, R., & Sharma, S. (2022). The Role of Alternatives to Antibiotics in Mitigating the
Antimicrobial Resistance Crisis. The Indian Journal of Medical Research, 156(3), 464–
https://doi.org/10.4103/ijmr.IJMR_3514_20.
Halevas, E. G., Avgoulas, D. I., Katsipis, G., & Pantazaki, A. A. (2022). Flavonoid-liposomes
formulations: Physico-chemical characteristics, biological activities and therapeutic
applications. European Journal of Medicinal Chemistry Reports, 5, 100059.
https://doi.org/https://doi.org/10.1016/j.ejmcr.2022.100059.
Kusumawati, R. P. H., Zamani, N. P., Soedharma, D., Nurjanah, N., Arifin, T., Yulius, Y.,
Samusamu, A. S., Akhwady, R., Ramdhan, M., Damanhuri, H., Efendi, E., Mayaguezz,
H., & Muhaemin, M. (2025). Anti-breast cancer bioactive compounds and in-silico
molecular prediction of Crassostrea angulata (Lamarck, 1819). Jurnal Pengolahan Hasil
Perikanan Indonesia, 28(1), 38–50. https://doi.org/10.17844/jphpi.v28i1.57937.
Magvirah, T., Marwati, M., & Ardhani, F. (2020). Uji Daya Hambat BakteriStaphylococcus
Aureus Menggunakan Ekstrak Daun Tahongai (Kleinhovia hospitaL.). Jurnal Peternakan
Lingkungan Tropis, 2(2), 41. https://doi.org/10.30872/jpltrop.v2i2.3687.
Majumdar, D., Dubey, A., Tufail, A., Sutradhar, D., & Roy, S. (2023). Synthesis, spectroscopic investigation, molecular docking, ADME/T toxicity predictions, and DFT study of two trendy ortho vanillin-based scaffolds. Heliyon, 9(6), e16057.
https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e16057.
Mswahili, M. E., & Jeong, Y.-S. (2024). Transformer-based models for chemical SMILES
representation: A comprehensive literature review. Heliyon, 10(20), e39038.
https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e39038.
Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of Antibiotics and
Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review.
Pharmaceuticals (Basel, Switzerland), 16(11). https://doi.org/10.3390/ph16111615.
Nikolic, I., Aleksic Sabo, V., Gavric, D., & Knezevic, P. (2024). Anti-Staphylococcus aureus
Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant
S. aureus (MRSA) Strains. In Antibiotics (Vol. 13, Issue 11).
https://doi.org/10.3390/antibiotics13111030.
Odhiambo, D. O., Omosa, L. K., Njagi, E. C., Kithure, J. G. N., & Wekesa, E. N. (2025). In-
silico pharmacokinetics ADME/Tox analysis of phytochemicals from genus Dracaena for
their therapeutic potential. Scientific African, 29, e02796.
https://doi.org/https://doi.org/10.1016/j.sciaf.2025.e02796.
Pinu, F. R., Villas-Boas, S. G., & Aggio, R. (2017). Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols. Metabolites, 7(4).
https://doi.org/10.3390/metabo7040053.
Plaskova, A., & Mlcek, J. (2023). New insights into the application of water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition, 10, 1118761.
https://doi.org/10.3389/fnut.2023.1118761.
Ratnawati, D. E., Marjono, & Anam, S. (2018). Prediction of Active Compounds from SMILES Codes Using a Backpropagation Algorithm. 060009. https://doi.org/10.1063/1.5062773
Refaey, M. S., Abosalem, E. F., Yasser El-Basyouni, R., Elsheriri, S. E., Elbehary, S. H., &
Fayed, M. A. A. (2024). Exploring the therapeutic potential of medicinal plants and their
active principles in dental care: A comprehensive review. Heliyon, 10(18), e37641.
https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e37641.
Sinha, S., Aggarwal, S., & Singh, D. V. (2024). Efflux pumps: gatekeepers of antibiotic
resistance in Staphylococcus aureus biofilms. Microbial Cell (Graz, Austria), 11, 368–
https://doi.org/10.15698/mic2024.11.839.
Stan, D., Enciu, A.-M., Mateescu, A. L., Ion, A. C., Brezeanu, A. C., Stan, D., & Tanase, C.
(2021). Natural Compounds with Antimicrobial and Antiviral Effects and Nanocarriers
Used for Their Delivery. Frontiers in Pharmacology, 12, 723233.
https://doi.org/10.3389/fphar.2021.723233.
Touaitia, R., Mairi, A., Ibrahim, N. A., Basher, N. S., Idres, T., & Touati, A. (2025).
Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. In
Antibiotics (Vol. 14, Issue 5). https://doi.org/10.3390/antibiotics14050470.
Wijaya, S., Tanaka, Y., Amin, A., Morita, A., Afendi, F., Batubara, I., Ono, N., Darusman, L.,
& Kanaya, S. (2016). Utilization of KNApSAcK Family Databases for Developing Herbal
Medicine Systems. Journal of Computer Aided Chemistry, 17, 1–7.
https://doi.org/10.2751/jcac.17.1.
Yamazaki, Y., Ito, T., Tamai, M., Nakagawa, S., & Nakamura, Y. (2024). The role of
Staphylococcus aureus quorum sensing in cutaneous and systemic infections.
Inflammation and Regeneration, 44(1), 9. https://doi.org/10.1186/s41232-024-00323-8
Zouine, N., Ghachtouli, N. El, Abed, S. El, & Koraichi, S. I. (2024). A comprehensive review
on medicinal plant extracts as antibacterial agents: Factors, mechanism insights, and
prospects. Scientific African, 26, e02395. https://doi.org/https://doi.org/10.1016/j.sciaf.2024.e02395.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Desdy Hendra Gunawan, Dodi Iskandar (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.