IN SILICO ANALYSIS OF ACTIVE LIGANDS OF MITRAGYNA SPECIOSA KORTH PLANT AS ANTICOCEPTIVE
ANALISIS IN SILICO LIGAND AKTIF TANAMAN MITRAGYNA SPECIOSA KORTH SEBAGAI ANTIOSISEPTIF
DOI:
https://doi.org/10.71275/roce.v2i1.73Keywords:
mitragyna speciosa korth, in silico, antiocciceptive, analgesicAbstract
Mitragyna speciosa Korth (MSK) plant or known as Kratom is a leading export commodity from West Kalimantan Province. The leaves of this plant are processed by farmers into crumbs and flour to be sold to collectors and exported abroad, especially to the United States. The leaves of this plant have long been used by local people as a traditional herbal medicine to relieve pain and provide a calming effect if the boiled water is drunk. The purpose of this study was to evaluate the content of Kratom as an Antinociceptive, Analgesic, General Anesthetic, Vasodilator, and 5 Hydroxytryptamine Release Stimulant (5HRS). Active metabolites and most of the simplified molecular input line entry (SMILE) codes of the MSK plant were obtained from the Knapsack database. The relationship between active metabolites and proteins in the human body was analyzed using STITCH software computationally. There are 23 active metabolites in MSK leaves. Isomitraphylline, Isopaynantheine, and Paynantheine have the highest Antinociceptive bioactivity (82.8). Corynoxine and Corynoxine B have higher Analgesic bioactivity (81.5) compared to other ligands. Isomitrafoline and Speciophylline show the strongest general Anesthetic (92.2) compared to other ligands.
Downloads
References
Alfiyanti, Y. D., Ratnawati, D. E., & Anam, S. (2019). Klasifikasi Fungsi Senyawa Aktif Data Berdasarkan Kode Simplified Molecular Input Line Entry System (SMILES) menggunakan Metode Modified K-Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(4 SE-), 3244–3251. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4902
Chidambaram, K., Alqahtani, T., Alghazwani, Y., Aldahish, A., Annadurai, S., Venkatesan, K., Dhandapani, K., Thilagam, E., Venkatesan, K., Paulsamy, P., Vasudevan, R., & Kandasamy, G. (2022). Medicinal Plants of Solanum Species: The Promising Sources of Phyto-Insecticidal Compounds. Journal of Tropical Medicine, 2022, 1–22. https://doi.org/10.1155/2022/4952221
De Gregori, M., Diatchenko, L., Belfer, I., & Allegri, M. (2015). OPRM1 receptor as new biomarker to help the prediction of post mastectomy pain and recurrence in breast cancer. Minerva Anestesiologica, 81(8), 894–900. http://www.ncbi.nlm.nih.gov/pubmed/25300626
Dodds, C. (1999). General Anaesthesia. Drugs, 58(3), 453–467. https://doi.org/10.2165/00003495-199958030-00006
Durkee, C. A., Covelo, A., Lines, J., Kofuji, P., Aguilar, J., & Araque, A. (2019). G i/o protein‐coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia, 67(6), 1076–1093. https://doi.org/10.1002/glia.23589
Gallaway, K. A., Skaar, T. C., Biju, A., Slaven, J., & Tillman, E. M. (2022). A pilot study of ADRA2A genotype association with doses of dexmedetomidine for sedation in pediatric patients. Pharmacotherapy, 42(6), 453–459. https://doi.org/10.1002/phar.2684
Giacoletti, G., Price, T., Hoelz, L. V. B., Shremo Msdi, A., Cossin, S., Vazquez-Falto, K., Amorim Fernandes, T. V., Santos de Pontes, V., Wang, H., Boechat, N., Nornoo, A., & Brust, T. F. (2022). A Selective Adenylyl Cyclase 1 Inhibitor Relieves Pain Without Causing Tolerance. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.935588
Haddad, M., Cherchi, F., Alsalem, M., Al-saraireh, Y. M., & Madae’en, S. (2023). Adenosine Receptors as Potential Therapeutic Analgesic Targets. International Journal of Molecular Sciences, 24(17), 13160. https://doi.org/10.3390/ijms241713160
Hariri, L., & Patel, J. B. (2023). Vasodilators. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/27092479
Iskandar, D., Widodo, N., Warsito, W., Masruri, M., Rollando, R., Warsidah, W., &
Antang, Y. P. P. (2022). Proposed Functional Activity of Bioactive Compounds from Spatholobus littoralis Hassk in LC-MS-MS and Silico Studies. Materials Science Forum, 1061, 181–186. https://doi.org/10.4028/p-0uei8m
Kumagai, T., Suzuki, H., Sasaki, T., Sakaguchi, S., Miyairi, S., Yamazoe, Y., & Nagata, K. (2012). Polycyclic Aromatic Hydrocarbons Activate CYP3A4 Gene Transcription through Human Pregnane X Receptor. Drug Metabolism and Pharmacokinetics, 27(2), 200–206. https://doi.org/10.2133/dmpk.DMPK-11-RG-094
Lauss, M., Kriegner, A., Vierlinger, K., & Noehammer, C. (2007). Characterization of the drugged human genome. Pharmacogenomics, 8(8), 1063–1073. https://doi.org/10.2217/14622416.8.8.1063
Liu, N., Sun, S., Wang, P., Sun, Y., Hu, Q., & Wang, X. (2021). The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. International Journal of Molecular Sciences, 22(15), 7931. https://doi.org/10.3390/ijms22157931
Maaliki, D., Issa, K., Al Shehabi, T., El-Yazbi, A., & Eid, A. H. (2019). The role of α2-adrenergic receptors in hypertensive preeclampsia: A hypothesis. Microcirculation (New York, N.Y. : 1994), 26(1), e12511. https://doi.org/10.1111/micc.12511
MacKillop, J., Gray, J. C., Weafer, J., Sanchez-Roige, S., Palmer, A. A., & de Wit, H. (2019). Genetic influences on delayed reward discounting: A genome-wide prioritized subset approach. Experimental and Clinical Psychopharmacology, 27(1), 29–37. https://doi.org/10.1037/pha0000227
Maharani, A. R., & Prasetyo, H. (2022). Legality of the Legal Status of Kratom Plants in Indonesia. UNIFIKASI : Jurnal Ilmu Hukum, 9(1), 27–38. https://doi.org/10.25134/unifikasi.v9i1.5502
Mulder, T. A. M., van Eerden, R. A. G., de With, M., Elens, L., Hesselink, D. A., Matic, M., Bins, S., Mathijssen, R. H. J., & van Schaik, R. H. N. (2021). CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.711943
Paul, B., Sribhashyam, S., & Majumdar, S. (2023). Opioid signaling and design of analgesics (pp. 153–176). https://doi.org/10.1016/bs.pmbts.2022.06.017
Prabhakar, K. R., Veerapur, V. P., Bansal, P., Vipan, K. P., Reddy, K. M., Barik, A., Reddy, B. K. D., Reddanna, P., Priyadarsini, K. I., & Unnikrishnan, M. K. (2006). Identification and evaluation of antioxidant, analgesic/anti-inflammatory activity of the most active ninhydrin–phenol adducts synthesized. Bioorganic & Medicinal Chemistry, 14(21), 7113–7120. https://doi.org/10.1016/j.bmc.2006.06.068
Qadir, S., Bashir, S., & John, R. (2020). Saffron—Immunity System. In Saffron (pp. 177–192). Elsevier. https://doi.org/10.1016/B978-0-12-818462-2.00015-2
Ramos-Matos, C. F., Bistas, K. G., & Lopez-Ojeda, W. (2023). Fentanyl. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/30551090
Sharma, A., Kamble, S. H., León, F., Chear, N. J. ‐Y., King, T. I., Berthold, E. C., Ramanathan, S., McCurdy, C. R., & Avery, B. A. (2019). Simultaneous quantification of ten key Kratom alkaloids in Mitragyna speciosa leaf extracts and commercial products by ultra‐performance liquid chromatography−tandem mass spectrometry. Drug Testing and Analysis, 11(8), 1162–1171. https://doi.org/10.1002/dta.2604
Shayeganpour, A., El-Kadi, A. O. S., & Brocks, D. R. (2006). Determination Of The Enzyme(S) Involved In The Metabolism Of Amiodarone In Liver And Intestine Of Rat: The Contribution Of Cytochrome P450 3a Isoforms. Drug Metabolism and Disposition, 34(1), 43–50. https://doi.org/10.1124/dmd.105.006742
Su, S., Shao, J., Zhao, Q., Ren, X., Cai, W., Li, L., Bai, Q., Chen, X., Xu, B., Wang, J., Cao, J., & Zang, W. (2017). MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats. Frontiers in Molecular Neuroscience, 10. https://doi.org/10.3389/fnmol.2017.00126
Vardanyan, R. S., & Hruby, V. J. (2006). Analgesics. In Synthesis of Essential Drugs (pp. 19–55). Elsevier. https://doi.org/10.1016/B978-044452166-8/50003-0
Vieira, C. M. P., Fragoso, R. M., Pereira, D., & Medeiros, R. (2019). Pain polymorphisms and opioids: An evidence based review. Molecular Medicine Reports, 19(3), 1423–1434. https://doi.org/10.3892/mmr.2018.9792
Wang, Q.-F., Sun, Z., Zheng, F.-R., Zhang, G.-W., & Liu, Z. (2018). Association of Adrenergic Receptor α2A (α2A-AR) Gene rs1800544 Polymorphism with Bone Mineral Density and Bone Turnover Markers in an Elderly Chinese Population. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 5102–5109. https://doi.org/10.12659/MSM.908376
Wen, L., Fan, Y., Xiong, W., Liu, Y., Zhang, T., Wei, G., Altamirano, A., Zhang, T., & Yan, Z. (2022). Exploring the Mechanism of Action of Trachelospermi Caulis et Folium for Depression Based on Experiments: Combining Network Pharmacology and Molecular Docking. Computational and Mathematical Methods in Medicine, 2022, 1–17. https://doi.org/10.1155/2022/3945063
Zhu, S.-J., Wang, K.-R., Zhang, X.-X., & Zhu, S.-M. (2019). Relationship between genetic variation in the α2A-adrenergic receptor and the cardiovascular effects of dexmedetomidine in the Chinese Han population. Journal of Zhejiang University. Science. B, 20(7), 598–604. https://doi.org/10.1631/jzus.B1800647
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Donor Utomo Muhammad Susilo, Dodi Iskandar, Mhd Syamsu Bahri (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.